吴恩达(Andrew Ng)机器学习公开课中文笔记
该笔记系转载Scruel,如有侵权请联系删除,在此感谢作者。
作者 GitHub 项目首页 | 知乎文章
week1
- 引言(Introduction)
- 单变量线性回归(Linear Regression with One Variable)
week2
- 线性代数回顾(Linear Algebra Review)
- 多变量线性回归(Linear Regression with Multiple Variables)
- Octave/Matlab 指南(Octave/Matlab Tutorial)
week3
- 逻辑回归(Logistic Regression)
- 正则化(Regularization)
week4
- 神经网络:表达(Neural Networks: Representation)
week5
- 神经网络:学习(Neural Networks: Learning)
week6
- 机器学习应用的建议(Advice for Applying Machine Learning)
- 机器学习系统设计(Machine Learning System Design)
week7
- 支持向量机(Support Vector Machines)
week8
- 无监督学习(Unsupervised Learning)
- 降维(Dimensionality Reduction)
week9
- 异常检测(Anomaly Detection)
- 推荐系统(Recommender Systems)
week10
- 大规模机器学习(Large Scale Machine Learning)
week11
- 实战:图像光学识别(Application Example: Photo OCR)